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PROBLEM 1 

Score: a+b+c+d+e=6+6+6+6+6=30 

 

A container with a volume of 1.0 dm3
 contains 2.0 ∙ 1023  He atoms. The temperature of 

the He gas is 54.4 K. You can assume that the He behaves like an ideal gas. 

 

Given: MHe
= 4.0 g mol-1, MN2

= 28.0 g mol-1, MO2
= 32.0 g mol-1. 

 

 

a) Determine the gas pressure.  

b) What is the root mean square (RMS) speed of the molecules at this temperature? 

c) What is the internal energy of the gas in the container? 

d) Now you replace every He atom by a N2 molecule. How do temperature, RMS speed 

and internal energy of the gas change? Explain.  

e) Draw a sketch of the Maxwell distribution. Roughly approximate the fraction of O2 

molecules that have molecular speeds in the range between 1500 m/s and 1600 m/s 

when the temperature is 300 K.   

  



PROBLEM 2 

Score: a+b+c+d +e=6+6+6+6+6=30 

Consider a hypothetical engine which connects two (infinite) reservoirs and undergoes the 

following reversible processes: 

i. isothermal expansion at temperature 𝑇ℎ  

ii. adiabatic expansion to temperature 𝑇𝑐   

iii. isothermal compression at temperature 𝑇𝑐   

iv. adiabatic compression to the initial state  

 

In every cycle, a quantity of heat 𝑄𝑖𝑛 flows from reservoir A into the engine and a quantity 

of heat 𝑄𝑜𝑢𝑡 flows from the engine into the reservoir B.  

 

a) Sketch the thermodynamic cycle in the usual (𝑝,𝑉)-diagram. Clearly indicate the 

direction of the cycle. In which steps does the heat flow and in which steps is the engine 

doing work?  

b) Sketch the thermodynamic cycle in a (slightly less usual) (𝑇,𝑆)-diagram. Indicate where 

the entropy of the engine changes and how these changes relate to the entropies of 

reservoirs A and B.  

c) Use entropy arguments to show, that the efficiency of the cycle equals 𝜂 = 1 − 𝑇𝑐/𝑇ℎ.  

d) The coal power plant in Eemshaven produces about 12 TWh of electricity per year from 

about 3 million tons of coal (thermal energy content of coal: 9 kWh kg-1). Determine 

the efficiency of the power plant and estimate 𝑇𝑐 and 𝑇ℎ assuming the power plant is an 

idealized Carnot engine. Is the result for 𝑇ℎ realistic? Estimate the efficiency of a 

primitive steam engine (use realistic numbers) and compare. 

e) Until now we have assumed infinite reservoirs A and B. Now assume both reservoirs 

are finite (and have the same heat capacity). Discuss the effect on the thermodynamic 

cycle and on the reservoir temperatures.   

  



PROBLEM 3 

Score: a+b+c =6+6+6=18 

 
 The thermal diffusion equation for a sphere can be written as 

 
𝜕𝑇

𝜕𝑡
= 𝐷

1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝑇

𝜕𝑟
) 

 

if there is no dependence on the angular coordinates. In this equation 𝑟 is the radial 

coordinate, 𝐷 is the diffusion coefficient and 𝑇 is the temperature. 

 

a) Give a general solution for the steady state case.  
b) Give the solution for the boundary condition of a spherical animal of radius 𝑟0, with 

body temperature 𝑇𝑏𝑜𝑑𝑦 for 𝑟 = 𝑟0 and a temperature of the outside medium 𝑇𝑜𝑢𝑡𝑠𝑖𝑑𝑒 

for 𝑟 → ∞.  
c) How much heat does the animal loose to the medium per second? The thermal 

conductivity of the medium is 𝜅. 
  



PROBLEM 4 

Score: a+b=6+6=12 

 

Typical turbomolecular pumps can generate a vacuum of about 1·10-10 bar. Assume the 

pump to be at 𝑇 = 25° 𝐶 and working on a gas primarily consisting of N2 molecules.  

a) Calculate the mean free path of the molecules and the collision frequency.  

b) Do the molecules that pass the turbomolecular pump have the same Maxwell 

Boltzmann distribution of speeds that the gas in the vacuum chamber has? (Hint: 

assume that the pump has a diameter of 10 cm. Use the result for the mean free path 

to argue.)  If the answer is no, what speed distribution do these molecules have? 

 

Collision diameter N2: 395 pm.  

  



Solutions 

 

PROBLEM 1 

a) 

𝑝𝑉 = 𝑁𝑘𝐵𝑇 

 

𝑝 =
𝑁𝑘𝐵𝑇

𝑉
=

2 × 1023 × 1.38 × 10−23 J
K⁄ × 54.4 K

10−3m
≈ 150 kPa 

b)  

𝑣𝑟𝑚𝑠 = √〈𝑣2〉 = √
3𝑘𝐵𝑇

𝑚
 

𝑚 =
0.004 kg mol−1

𝑁𝐴
≈ 6.6 × 10−27kg 

 

𝑣𝑟𝑚𝑠 = √
3 × 1.38 ∙ 10−23 J

K⁄ × 54.4 K

6.6 × 10−27kg
≈ 584 ms−1 

c) The internal energy of a (monoatomic) ideal gas is sum of the particle kinetic energies. 

〈𝑢〉 =
1

2
𝑚〈𝑣2〉 

〈𝑈〉 = 𝑁〈𝑢〉 = 𝑁
1

2
𝑚〈𝑣2〉 = 𝑁

1

2
𝑚

3𝑘𝐵𝑇

𝑚
=

3

2
𝑁𝑘𝐵𝑇 ≈ 225J 

d)  

The temperature would not change, as the number of particles stays the same. The rms 

speed, however, does depend on 
1

√𝑚
. The mean kinetic energy is defined as 〈𝐸〉 =

1

2
𝑚𝑣𝑟𝑚𝑠

2 =
3

2
𝑘𝐵𝑇 and does not depend on 𝑚, so neither does 𝑈. 

 

e) 

 

 

 

 

 

 

 

𝑓(𝑣) =
4

√𝜋
(

𝑚

2𝑘𝐵𝑇
)

3
2⁄

𝑣2𝑑𝑣 𝑒
−

𝑚𝑣2

2𝑘𝐵𝑇 

 

 



𝑚 =
0.032 kg mol−1

𝑁𝐴
≈ 5.3 × 10−26kg 

 

𝑓(1550 ms-1) =
4

√𝜋
(

5.3 ∙ 10−26kg

2𝑘𝐵300 K
)

3
2⁄

(1050 ms-1)2𝑑𝑣 𝑒
−

5.3∙10−26kg(1050 ms-1)
2

2𝑘𝐵300K  

 

≈ 1.2 ∙ 10−4 sm-1𝑑𝑣 

 

Δ𝑣 = (1500 − 1600)ms-1 = 100 ms-1 

 

The fraction is approximately 0.012%.  
  



PROBLEM 2 

a) 

 
Heat into the engine: i) 

Heat out of engine: iii) 

Work by engine: i), ii) 

Work on engine: iii) iv) 

b)    

  

Entropy changes in the isothermal steps i) and iii) (heat flows to keep 𝑇 constant). 

Adiabatic means no heat flow, i.e. no entropy change. 

∆𝑆𝐴 = ∫
𝑑𝑄

𝑇ℎ
=

∆𝑄

𝑇ℎ
=

𝑄ℎ

𝑇ℎ
 

 

∆𝑆𝐵 =
𝑄𝑐

𝑇𝑐
 

 

c)      ∆𝑆ℎ = ∆𝑆𝑐 



𝑄ℎ

𝑇ℎ
=

𝑄𝑐

𝑇𝑐
 

𝜂 =
𝑊

𝑄ℎ
=

𝑄ℎ − 𝑄𝑐

𝑄ℎ
= 1 −

𝑄𝑐

𝑄ℎ
= 1 −

𝑇𝑐

𝑇ℎ
 

d)   

𝜂 =
12 TWh

3 ∙ 109kg × 9 kWh kg−1
≈ 0.44 

The cooling water is liquid water from outside the plant (e.g. the sea), let’s say 𝑇𝑐 = 300 K. 

𝜂 = 1 −
𝑇𝑐

𝑇ℎ
 

𝑇ℎ ≈
𝑇𝑐

0.56
= 535 K 

This is for an idealized Carnot process. The actual temperatures are much higher! 

Steam engine: Th=100oC=373K, Tc=50 oC=323K, 𝜂 = 1 −
𝑇𝑐

𝑇ℎ
≈ 0.1 

e)  The reservoirs will converge to equal temperatures. At the same time, the efficiency 

will gradually drop zo zero. 

  



PROBLEM 3 

a) 

𝐷
1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝑇

𝜕𝑟
) = 0 

𝑟2
𝜕𝑇

𝜕𝑟
= 𝑐𝑜𝑛𝑠𝑡 

𝑇(𝑟) = 𝐴 +
𝐵

𝑟
 

b) 

𝑇(𝑟0) = 𝑇body = 𝐴 +
𝐵

𝑟0
 

𝑇(𝑟 → ∞) = 𝑇outside 

𝐴 = 𝑇outside 

𝐵 = (𝑇body − 𝑇outside)𝑟0 

 

c) 

𝐽𝑟 = −𝜅
𝜕𝑇

𝜕𝑟
= 𝜅𝑟0(𝑇body − 𝑇outside)

1

𝑟2
 

 

 

𝐽𝑟0
= 𝜅𝑟0(𝑇body − 𝑇outside)

1

𝑟0
2
 

 

𝐽𝑟0
4𝜋𝑟0

2 = 4𝜋𝜅𝑟0(𝑇body − 𝑇outside)
1

𝑟0
2 per second 

 

 

 

  



PROBLEM 4 

a) 

𝜆 =
1

√2𝑛𝜎
 

 

𝑛 =
𝑁

𝑉
=

𝑝

𝑘𝐵𝑇
=

1 × 10−5Pa

1.38 ×
10−23J

K × 298 K
≈ 2.4 × 1015m−3 

𝜎 = 𝜋 × (395 × 10−12)2 = 4.9 × 10−19m2 

𝜆 =
1

√2 × 2.4 × 1015m−3 × 4.9 × 10−19m2
= 601 m 

 

This is huge, because of the low pressure, molecules essentially do not collide with each 

other in a normal-sized container. 

 

b)  Despite the macroscopic diameter of the pump, we are dealing with effusion rather than 

with a regular Maxwell-Boltzmann distribution, simply because the mean free path is large 

as compared to the diameter of the opening. 


